Explore Jobs
Find Specific Jobs
Explore Careers
Explore Professions
Best Companies
Explore Companies
Electrical engineer job growth summary. After extensive research, interviews, and analysis, Zippia's data science team found that:
The projected electrical engineer job growth rate is 3% from 2018-2028.
About 9,800 new jobs for electrical engineers are projected over the next decade.
Electrical engineer salaries have increased 7% for electrical engineers in the last 5 years.
There are over 94,924 electrical engineers currently employed in the United States.
There are 68,536 active electrical engineer job openings in the US.
The average electrical engineer salary is $81,026.
Year | # Of Jobs | % Of Population |
---|---|---|
2021 | 94,924 | 0.03% |
2020 | 95,922 | 0.03% |
2019 | 96,678 | 0.03% |
2018 | 97,574 | 0.03% |
2017 | 96,223 | 0.03% |
Year | Avg. Salary | Hourly Rate | % Change |
---|---|---|---|
2025 | $81,026 | $38.95 | +2.3% |
2024 | $79,178 | $38.07 | +2.0% |
2023 | $77,659 | $37.34 | +1.7% |
2022 | $76,390 | $36.73 | +0.9% |
2021 | $75,707 | $36.40 | +1.3% |
Rank | State | Population | # of Jobs | Employment/ 1000ppl |
---|---|---|---|---|
1 | District of Columbia | 693,972 | 254 | 37% |
2 | Massachusetts | 6,859,819 | 1,336 | 19% |
3 | Virginia | 8,470,020 | 1,511 | 18% |
4 | Colorado | 5,607,154 | 968 | 17% |
5 | Maryland | 6,052,177 | 971 | 16% |
6 | California | 39,536,653 | 5,778 | 15% |
7 | Oregon | 4,142,776 | 603 | 15% |
8 | Washington | 7,405,743 | 1,070 | 14% |
9 | Delaware | 961,939 | 137 | 14% |
10 | Arizona | 7,016,270 | 881 | 13% |
11 | Utah | 3,101,833 | 406 | 13% |
12 | Minnesota | 5,576,606 | 643 | 12% |
13 | New Hampshire | 1,342,795 | 163 | 12% |
14 | Michigan | 9,962,311 | 1,105 | 11% |
15 | Iowa | 3,145,711 | 348 | 11% |
16 | Vermont | 623,657 | 68 | 11% |
17 | Wyoming | 579,315 | 66 | 11% |
18 | Georgia | 10,429,379 | 1,031 | 10% |
19 | Wisconsin | 5,795,483 | 568 | 10% |
20 | Alabama | 4,874,747 | 510 | 10% |
Rank | City | # of Jobs | Employment/ 1000ppl | Avg. Salary |
---|---|---|---|---|
1 | Cedar Rapids | 20 | 15% | $78,784 |
2 | Huntsville | 21 | 11% | $74,722 |
3 | Lansing | 13 | 11% | $74,158 |
4 | Orlando | 20 | 7% | $74,807 |
5 | Overland Park | 13 | 7% | $71,292 |
6 | Atlanta | 29 | 6% | $75,969 |
7 | Baton Rouge | 14 | 6% | $81,455 |
8 | Boston | 37 | 5% | $90,542 |
9 | Denver | 37 | 5% | $83,185 |
10 | Washington | 24 | 4% | $89,424 |
11 | Tampa | 14 | 4% | $75,220 |
12 | San Diego | 36 | 3% | $95,364 |
13 | Tucson | 16 | 3% | $76,411 |
14 | Sacramento | 13 | 3% | $105,582 |
15 | San Francisco | 17 | 2% | $105,421 |
16 | Indianapolis | 16 | 2% | $69,903 |
17 | Phoenix | 23 | 1% | $76,951 |
18 | Chicago | 22 | 1% | $74,830 |
19 | Los Angeles | 15 | 0% | $96,475 |
San Jose State University
Seattle University
Gonzaga University
University of Minnesota - Duluth
Stevens Institute of Technology
New Jersey Institute of Technology
Weber State University
Southern Illinois University Edwardsville
Bellingham Technical College
Duke University
University of San Diego
California State University - Fresno
Tzuyang Yu Ph.D.: A few tips to share with junior engineers are listed below. Be eager to learn from peers and other senior engineers, be open-minded to make friends, be adaptive to different cultures in the work environment, be professional (e.g., be punctual at deadlines, be mindful in appearance), be empathetic (focus on people, not mobile devices).
Kambiz Farahmand Ph.D., P.E.: All engineering and technical skills will be in need. People who are capable to use technology will be in high demand. Project management skills. Ability to use various software and be able to do some coding. Understanding of AI and how it applies to the specific work that you do.
Julie Brandis: Oregon State University provides support in salary negotiation, also students can work with mentors who are familiar with company hiring practices and wage structures. If you have internship experience, that can help to boost your starting salary.
Julie Brandis: Engineering is a highly transferable degree – so take the time to visit with many employers. At Oregon State University we provide those opportunities beyond traditional career fairs. Companies are seeking students who do well in the classroom as well as students who engage in other activities and clubs – that can be sports, a student club or community organization.
Davide Masato: As a graduate entering the field of plastics engineering, I recommend focusing on continuous learning, staying updated on industry trends, and seeking mentorship through participation in professional societies. Embrace challenges as opportunities for growth, and don't hesitate to network within the industry. Developing strong problem-solving skills and attention to detail will set a solid foundation for your career.
Craig Johnson Ph.D., P.E.: To begin your career in our field, please know that there are some shared values, some behavior constraints, and some awesome possible career paths for you to explore! Our program is accredited through ABET, which means that you can acquire your Professional Engineering licensure. Along with licensure are ethics compliance and legal behavior. You must put safety as a first constraint in all work. Create great technical solutions to real problems that may affect us all. Politics and company policies evolve, and we must evolve with them. New finance realities dictate that you will be more active in both seeking new jobs and changing jobs to promote your careers. You are at the center of many crossroads of technical activity that present options for your path forward.
Craig Johnson Ph.D., P.E.: Network with your peers and have job opportunities in sight at all times. Keep up your virtual profiles and be the engineer everyone wants to have around. Each job selection is your choice, but networking and being proactive in seeking opportunities is crucial to maximizing your salary potential.
Craig Johnson Ph.D., P.E.: Master basic science and engineering concepts, as well as application of 'soft skills' such as written and verbal communication. Acquire skills and knowledge areas in electromechanical devices, especially in areas of energy and heat transfer, reflecting current issues related to climate change and power management.
Christopher Misorski FASM: Maximizing salary potential at the start of your career is not a clear pathway generally. One way that you can be considered more valuable, and hence worth a better salary, is to have participated in a co-op or internship program with a company in your field. This experience gives employers some confidence that you were able to carry out assignments and thrive in a workplace environment. The employer that you worked for may be inclined to offer you a position upon graduation and you are now worth more because you have already proven to them your abilities. Even if they don’t offer you a job (no appropriate open position may be available) your ability to discuss your experiences with the HR recruiter or hiring manager at another company can instill confidence in your selection as a hire. Just remember, if you tell them you did a project, be prepared to explain it so it doesn’t appear you were just in the background of this project, just going along for the ride.
San Jose State University
Mechanical Engineering
Professor Winncy Du: Keep Engineering Ethics in mind -- protect the public and the engineers themselves. Make sure that they know and understand the core concepts of their field. No matter what they design, they need to follow the industrial standards or grades, and safety measurements closely. Check, check, and double check, especially when they design biomedical devices, mobile robots, autonomous vehicles or drones, and automated material handling systems. I saw increasing engineers' designs or products challenged by the prospect of being deposed in the courtroom.
Professor Winncy Du: Be a 'star' engineer and establish track records at work. Earn new skills. Many companies offer continuous education programs through training, certificate programs, and joint degrees with universities. You can maximize your salary through joining these programs while you are working. Become a leader, such as a project manager or supervisor can boost your salary. Get recognitions, such as becoming a fellow of American Society of Mechanical Engineers, filing patterns, having publications, receiving engineer awards. Have great communication skills and get along with people well.
Thomas Congedo PhD: That comes from your ability to focus on technical product of the highest quality, always seeking to truly understand the customer’s needs. For example, often a customer will phrase a problem by stating the solution he or she assumes. Taking the time to respectfully draw out the thinking further can make you the customer’s hero, and this makes you the person likely to be selected for the challenging and most rewarded assignments.
Seattle University
Civil Engineering
Jhon Smith: Do not be afraid to ask questions to your supervisors (although do not take it to an extreme and become demanding—show initiative). You get the fundamentals of engineering at school and you are equipped to use them but it takes a few years to feel comfortable. Engineering is a profession of practice and it is only through practice that you best learn it.
Jhon Smith: Expand your network, join professional organizations and committees, become valuable in whatever company you work for, never stop learning, seek for opportunities for professional work, get your PE license. After these you will become more valuable naturally and could comfortably ask for a promotion or a salary increase because you’d know you deserve it.
Jhon Smith: Professional skills such as being able to communicate clearly, being flexible, open-minded, eager to take on challenges, adept and working with others and taking ownership of the projects tasks given to you. Staying grounded to the fundamental concepts you learn in school so every time you run a sophisticated piece of software to do design you must be able to use those fundamentals to check the results.
Steven Schennum Ph.D. P.E.: Make sure electrical engineering is something that YOU want to do and not something you are doing for someone else (a friend, a relative, etc.). I’ve had students who were pursuing an EE degree just to make their parents (or uncle, or whomever) proud, and weren’t really interested in what they are studying. If you do not have the passion to be an engineer, then do something else. In addition to passion, engineering requires a lot of math, reason, and logic. If you are easily frustrated, struggle with mathematics, and are inclined to give up, then don’t waste your time. Find a more suitable way to live your life. If you live your life by disregarding your own interests while trying to gain the approval of someone else, you will wind up being miserable.
Steven Schennum Ph.D. P.E.: The most important skill is the ability to learn new things, and especially to unlearn things you “know” after evidence demonstrates that these things are not true. Learn how to analyze information. Your intuition, simulations, and results should all be in alignment. If they are not, then dig deeper. Learn the terminology and jargon specific to your company and your projects. Spend time reading. Don’t be afraid to ask questions. Don’t be intimidated by new software.
Steven Schennum Ph.D. P.E.: Put a good resume together and follow suggestions of people who are experts at preparing resumes. Before you have an interview, practice interviewing. Participate in a mock interview and listen to feedback. Maximize salary potential by documenting your accomplishments, your work, and your results. Keep a journal. If you have good documentation, you can more easily make a case for promotion when the time comes.
Richard Davis: Likes: Engineers often enjoy working on cutting-edge technologies and solving challenging problems. For example, a biomedical engineer might find satisfaction in developing a new prosthetic limb that improves a patient's quality of life. The sense of accomplishment from seeing their designs come to life or their solutions implemented successfully can be gratifying. Engineers typically enjoy working in collaborative teams, where they can bounce ideas off colleagues. Engineering offers the chance to make a tangible difference in the world, whether it is through developing life-saving medical devices, improving infrastructure, or creating sustainable energy solutions. Dislikes: Like any profession, engineering has its share of challenges. It can sometimes involve long hours, especially when deadlines are approaching or projects hit unexpected roadblocks. Dealing with technical challenges and troubleshooting can be frustrating and mentally taxing, mainly when solutions are elusive. Depending on the industry and specific role, engineers may encounter bureaucracy or red tape that slows down project progress. Engineers may also face ethical dilemmas, such as balancing cost-effectiveness with safety or environmental concerns, which can be challenging to navigate.
Richard Davis: Engineers engage in various daily activities that are intellectually stimulating and rewarding. Every task is a step toward a tangible accomplishment, from innovating, designing, testing, and implementing new technologies to troubleshooting and optimizing existing systems to reduce costs, increase productivity, and improve quality. They may spend time in meetings discussing project progress, collaborating with colleagues, and planning future steps, all of which contribute to the sense of achievement. Engineers often use software tools to create designs, analyze data, and simulate systems, further enhancing their productivity and satisfaction. Depending on the field, they might spend time in labs conducting experiments, on-site overseeing construction or manufacturing processes, or in offices working on plans and reports, all of which are opportunities to see their work come to fruition. Entry-level Engineers: A bachelor's degree in engineering trains engineers with strong analytical and problem-solving skills. Entry-level engineers might start with tasks like data collection and analysis or assisting senior engineers with projects. Entry-level engineers might also spend time shadowing more experienced colleagues, attending training sessions, and gradually taking on more responsibility and management as they gain experience.
Richard Davis: Engineering offers career opportunities across various industries, from technology and healthcare to infrastructure and environmental sustainability. With technological advancements and the increasing complexity of global challenges, such as climate change, food and clean water, and urbanization, engineers are in high demand to develop innovative solutions. For example, environmental engineers are crucial in developing sustainable solutions to reduce pollution and conserve resources. Engineering provides opportunities for creativity and problem-solving, making it a rewarding career choice for those who enjoy tackling complex problems. The global focus on sustainability and renewable energy presents exciting prospects for engineers to contribute to meaningful projects that positively impact society and the environment.
Min Song: Well, first, it’s important to be aware of typical salary ranges within the field and for the company extending an offer in particular, with that knowledge individuals can negotiate to maximize their compensation package. Generally speaking, the job description is great place to start to understand your competitiveness as a candidate and how to make the case for higher compensation. You might not possess all the skills on the list, but you must trust yourself that you will acquire all the needed skills and convince the employer that you will excel in performing the job and thus merit a higher starting salary. One way to earn a salary raise is to continuously improve your skillset, expand your knowledge base, and keep up with the state-of-the-art technology in your field. Another way is to build your professional network and identity, which can lead to promotions or a better job opportunity.
Min Song: Communication skills and innovative thinking skills. As emerging technologies continue to be complex and multidisciplinary, it’s important to be able to communicate with professionals in diverse disciplines. Taking robotics, for example, the electrical engineer must be able to work with mechanical and biomechanical engineers, computer engineers, software engineers, artificial intelligence experts, cognitive scientists, system engineers, etc. A person will be able to generate innovative ideas only if the person has a complete and comprehensive understanding of the entire system and can work well with other individuals with a range of expertise.
Min Song: Have an open mind and be willing to learn new knowledge and skills. College education primarily focuses on the development of critical and creative thinking skills, the learning of fundamental principles and design methodologies, and the building up of enthusiasm and dedication to lifelong learning. Starting a professional career requires new graduates develop the ability to translate the knowledge and skills developed in school to solving complex, real-world problems.
Mishah Salman Ph.D.: An underappreciated skill that I think will become more sought-after is the ability to validate computer-made decisions and their shortcomings. With the growing prominence of AI use in design, problem solving, and decision making, the engineering field will need experts to error-check decisions made using these technologies. Sometimes there are unexplored gaps that these technologies overlook, and sometimes there are biases or inappropriate assumptions baked into AI-based results. Humans are inherently imaginative and creative. We excel at picking up on things that computer algorithms may miss. Talented experts that recognize and address these issues will remain invaluable in the workforce. Another indispensable skill that is often overlooked in engineering is effective interpersonal communication. Whether in a teamwork context, a leadership role, or a client interaction, competent communication is crucial. This can take the form of conversation, live presentations, written correspondence, and beyond. People that hone their communication skills are often recognized, and tend to be the individuals that are promoted to more senior roles.
Mishah Salman Ph.D.: To maximize salary potential, I recommend growing your professional network and being flexible within your career. Attending professional gatherings and rubbing shoulders goes a very long way. It’s amazing how you can casually bump into some well-respected team leader that’s trying to fill an opening or glean information about a new project that needs fresh talent. Network with people in diverse fields and roles. You never know who knows who. Making a positive impression and having someone recognize your name down the line can go a very long way!
Mishah Salman Ph.D.: My advice to recent graduates is to be open to non-conventional roles. Taking on responsibilities beyond one’s official discipline provides broader value to employers. Many students that graduate with degrees in mechanical engineering (or similar disciplines) find great success by stepping outside of their expected job title. Sometimes exploring roles with titles like “analyst” or “manager” or “designer” can provide interesting opportunities to apply one’s engineering skillset in an alternate context. The real strength of your degree is the transferable skillset that you developed along your educational journey. Keep your options open!
Mansooreh Mollaghasemi Ph.D.: Build skills in high demand areas such as data analytics, supply chain management, and automation. Certification such as Project Management Professional (PMP) can make a candidate more attractive and justify a higher starting salary. Internships can also provide valuable industry experience and can often lead to higher starting salaries.
Mansooreh Mollaghasemi Ph.D.: Concurrent with building technical skills, they must build soft skills such as communication, teamwork, problem-solving, and leadership. These skills are often the differentiators between good and great engineers.
Megumi Usui: Many individuals aspire to earn a substantial salary right from the beginning of their careers. However, this is not typically how the professional world operates. it is essential to demonstrate to your employer that you are a skilled, valuable, and irreplaceable asset. This process takes time and dedication. Avoid pressuring your employer for immediate rewards based solely on self-perception. While family may view you as exceptional, in the professional realm, you must distinguish yourself through your actions. Prove your worth by consistently arriving on time, working diligently, completing tasks swiftly and accurately, and exceeding expectations. Take a proactive approach to your projects and strive to impress your employer in every conceivable way. Continuously acquiring new skills that are valuable to the company is crucial. Additionally, building a strong network within your field by making professional connections and fostering friendships can significantly enhance your career prospects. By embodying these qualities, you can effectively demonstrate your value and potentially achieve the financial and professional rewards you seek.
Megumi Usui: Given the rapid advancement in AI technology, its potential integration into the drafting and design field remains uncertain in terms of timing and methodology. However, if and when AI becomes a significant component of this industry, it will be crucial to find ways to collaborate effectively with AI systems to leverage their capabilities for the betterment of society. As technology continues to advance at an unprecedented pace, this collaborative approach will be essential. In this evolving landscape, proficiency in CAD skills remains indispensable. It is important to emphasize that CAD expertise extends beyond mere modeling; professionals must also ensure that their designs are sustainable and adhere to the latest industry standards. This holistic approach is critical for addressing contemporary challenges and aligning with global sustainability goals. Moreover, the significance of complementary skills such as effective communication and time management cannot be overstated. These competencies are vital for the successful execution of projects and fostering productive collaboration within multidisciplinary teams. By integrating technical proficiency with these essential soft skills, professionals can excel in an increasingly dynamic and competitive environment, positioning themselves to adapt to future technological advancement.
Megumi Usui: Even after obtaining a degree, it is crucial to recognize that continuous learning is a fundamental aspect of professional development in the workplace. One must cultivate an open-minded attitude and demonstrate a willingness to acquire new knowledge and skills at any time and in any context. Effective communication with colleagues and clients is essential for successful collaboration and project execution. It is important to understand that the professional environment is significantly different from the academic setting. In a company, the focus is delivering work that meets the expectations and standards set by the employer and satisfies the needs of clients, rather than merely fulfilling personal criteria. Furthermore, it is imperative to produce high-quality work consistently. Mediocre performance is unacceptable, and organizations will not hesitate to seek replacements if the work delivered does not meet their standards. Ensuring that your work is thorough, precise, and aligns with the company's objectives is critical for maintaining the position and advancing their career.
Michael Denn: 1. Become the expert in whatever you do. 2. Understand how your work fits into the bigger picture and keep that in mind when you do your work. 3. Keep learning! Your engineering degree is not the end of your education! 4. Take stretch assignments and opportunities whenever you can.
Michael Denn: 1. The time needed to progress from an idea to a quality prototype is continually decreasing. That trend will likely continue. Skills that support short development times, such as computer modeling, simulations and rapid prototyping, will continue to be valued. 2. One skill that will always be valuable is the ability to acquire new knowledge and apply it to the task at hand.
Michael Denn: The answers to this question are largely the same as the answer to question 1. However, here are some additional points: 1. Excel in your job. Become the person everyone goes to for whatever type of work you do. 2. Develop and maintain a career plan. Make sure your assignments and tasks align with your plan. When you have the opportunity to change positions, keep you plan in mind.
Bellingham Technical College
Precision Metal Working
Kyle Miller: The advice I feel the most compelled to offer, based on personal experience, is to embrace the first few years in the field as a nebulous growth period. There is often a rush for graduates to 'realize their identity' in the field, at the risk of narrowing their potential in the trades. The first year or two is a great time to shake every hand and make every acquaintance possible. A lot of those interactions can help guide a trades-person along a pathway they didn't realize was possible upon their first steps into the working world.
Dr. Jimmie Lenz D.B.A.: A primary reason is the value placed on the quantitative nature of an engineering degree and the fact that this is primarily applied learning and skills, as opposed to the theoretical nature of some other areas of quantitative study. Being able to start working as soon as they start is very attractive to employers, as well as the broad knowledge of software, artificial intelligence, and data science that most engineers leave school with.
Dr. Jimmie Lenz D.B.A.: Engineering encompasses so many areas of modern life that it’s impossible to provide a comprehensive answer here. The training that engineers receive, both the technical and the applied nature, make these individuals quite attractive to all types of industries. Perhaps the most surprising to many people are the significant number of engineers employed in financial services.
University of San Diego
Mechanical Engineering
Dr. Imane Khalil: Focus on pursuing work that aligns with your passions and values rather than solely the big salary. Growth and purpose will lead to a bigger salary over time. When negotiating job offers, ensure you're being compensated fairly compared to industry standards and your peers, but prioritize career development opportunities and job satisfaction over salary.
Hovannes Kulhandjian Ph.D.: Negotiate Your Starting Salary: Research industry salary standards and be prepared to negotiate a competitive starting salary based on your qualifications and experience. Pursue In-Demand Skills: Develop specialized skills and certifications that are in high demand within the industry. This can make you more valuable to employers. Seek Opportunities for Advancement: Look for roles with potential for growth and advancement within the company. Express your interest in taking on challenging projects and responsibilities. Leverage Internships and Experience: Demonstrate your value to employers by showcasing your internships, projects, and relevant experience. Stay Informed: Keep up with industry trends and market conditions. Staying informed can help you position yourself for better opportunities and salary increases.
Hovannes Kulhandjian Ph.D.: Programming and Software Development: As technology advances, the integration of hardware and software becomes more prevalent. Familiarity with programming languages like Python, C++, or MATLAB can be beneficial. Artificial Intelligence and Machine Learning: These technologies are being increasingly used in electrical engineering applications such as signal processing, automation, and control systems. Data Analysis: The ability to interpret and analyze data from sensors and other sources will become more important as data-driven decision-making continues to grow. Cybersecurity: Protecting electrical systems from cyber threats is becoming increasingly important. Understanding cybersecurity principles can be a valuable asset. Interdisciplinary Collaboration: Collaboration across different engineering disciplines and fields such as computer science, mechanical engineering, and environmental science will be essential for complex projects.
Hovannes Kulhandjian Ph.D.: Stay Curious and Keep Learning: The field of electrical engineering is constantly evolving. Stay up to date with the latest advancements and technologies through continuous learning and professional development. Build a Strong Foundation: Focus on mastering the core principles of electrical engineering to provide a strong foundation for your career. Network: Build professional relationships with peers, mentors, and industry experts. Attend conferences and seminars to expand your network and learn from others. Gain Practical Experience: Look for internships, co-op positions, or entry-level jobs that provide hands-on experience. This practical exposure will help you apply your knowledge and stand out in the job market. Develop Soft Skills: Communication, teamwork, and problem-solving skills are crucial in any engineering role. Cultivate these skills to work effectively with others and advance your career.